您的位置首页百科问答

怎样化循环小数为分数

怎样化循环小数为分数

的有关信息介绍如下:

化循环小数为分数的方法:

1、纯循环小数化成分数的法则是:抄下一个循环节作为分子;连写几个9作为分母,9的个数等于一个循环节的位数。

例如:0.7272……循环节为7,2两位,因此化为分数为72/99=1/8;

2、混循环小数化成分数的法则是:这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。分母的头几位数是9,末几位是0。9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。

例如0.41666……化成分数,第二个循环节以前的小数部分组成的数416,小数部分中不循环部分组成的数41,差是416-41=375作为分子;循环节中的位数是1位,9的个数是1,不循环部分的位数是2位,0的个数是2,900作为分母。因此化为分数为375/900=5/12。

怎样化循环小数为分数

扩展资料:

无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。

例如:0.333333……

循环节为3

则0.33333.....=3*10^(-1)+3*10^(-2)+……+3*10^(-n)+……

前n项和为:0.3[1-(0.1)^(n)]/(1-0.1)

当n趋向无穷时(0.1)^(n)=0

因此0.3333……=0.3/0.9=1/3

注意:m^n的意义为m的n次方。

再如:0.999999.......

循环节为9

则0.9999.....=9*10^(-1)+9*10^(-2)+……+9*10^(-n)+……

前n项和为:{0.9*[1-(0.1)^n]}/(1-0.1)

当n趋向无穷时(0.1)^n=0

因此:0.99999.....=0.9/0.9=1

混循环小数

例:0.12111…… 1的循环,同样,我们设此小数为x,可得:

1000x-100x=121.111……-12.111……

900x=109

X=109/900

例:将无限循环小数0.123(·)化成分数:

解题:已知无限循环小数:0.123(·),将已知无限循环小数0.123(·)的未知分数设为X,

∴X=0.123(·)——1式,(1式)两边同时乘以10得:

10X=1.23(·)——2式,(2式)-(1式)得:9X=1.11,X =1.11/9,

X =0.37/3,X =37/300,∴X=0.123(·)=37/300,即:0.123(·)=37/300

归纳

它的公式是:

X·10∧(a+c)-x·10∧a,这里的a是小数点后的循环节前的数字的位数,c代表循环节位数。

带小数也适用!!

参考资料:百度百科--无限循环小数化分数