芝诺悖论有哪四个?
的有关信息介绍如下:1、二分法悖论
一个人在到达目的地之前,要先走完路程的1/2,再走完剩下总路程的1/2,再走完剩下的1/2……按照这个要求可以无限循环的进行下去。因此有两种情况:①这个人根本没有出发;②只要他出发了,就永远到不了终点。(尽管离终点越来越近)
2、阿基里斯悖论
其实,这个悖论就是指这个有趣的故事——阿基里斯与乌龟赛跑。阿基里斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为乌龟10倍,乌龟在前面100米跑,他在后面追,但他不可能追上乌龟。
3、飞矢不动
“飞矢不动”中的“矢”指的是弓箭中的箭。正常的射箭,任何人都知道,只要箭离了弦,就能飞出去,经过一段空间运动后,到达另一个位置。
然而,芝诺认为:如果我们截取“飞矢”的每一个瞬间,它在空中都是“静止”的。既然每一个瞬间都是静止的,所有的瞬间加起来也应该是静止的,因此,“飞矢”是“不动”的。
4、游行队伍悖论
假设在运动场上,在一瞬间(一个最小时间单位)里,相对于观众席A,队列B、C分别各向右和左移动一个距离单位。
而此时,相对于B,C移动了两个距离单位。芝诺认为,既然队列可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,那么,半个时间单位就等于一个时间单位。
扩展资料
亚里士多德对芝诺悖论作出了这样的解释:
对于第一、三个悖论,他认为只要假设时间是也是无限不可分的,那么每一个时间点对应一个空间点,就能在无限不可分的一段时间里跨过一段无限不可分的空间。
对于第二个悖论,他认为:当追赶者与被追者之间的距离越来越小时,追赶所需的时间也越来越小。无限个越来越小的数加起来的和是有限的,所以可以在有限的时间追上。(然而并不严谨)
而对于阿基里斯悖论,阿基米德发现了一种类似于几何级数求和的方法,而问题中所需的时间是成倍递减的,这正是一个典型的几何级数,由此可知阿基里斯追上乌龟的总时间是一个有限值。