什么是周期函数?
的有关信息介绍如下:周期性是三角函数最重要的性质之一,虽然教科书中给出了周期函数的定义,但我们对周期函数的有关问题确实是知之甚少,本文对有关周期函数的有关问题进行简要的概述以满足读者的求知要求.?一个周期函数不一定存在正周期.比如大家熟知的y=sinx,x∈(-∞,0),既便是存在正周期也不见得存在最小正周期,比如常数函数f(x)=a,狄立克莱(Dirichlet)函数f(x)=等,一个周期是否是函数的最小正周期,一般要用反证法进行严格的证明.比如2π是y=sinx,x∈R;y=cosx,x∈R的最小正周期,π是y=tanx,x∈R,x≠+kπ,k∈Z的最小正周期,是y=|sinx|+|cosx|的最小正周期等.当然,有很多与三角函数有关的函数也不一定是周期函数,例如y=sinx,x∈〔-100π,100π〕,y=sin,y=sin|x|?,y=sinx2,y=sin等等.?两个周期函数的和一定是周期函数吗?结论是否定的.比如y=sinx+cosx就不是周期函数.而两个周期函数的和如果是周期函数,这个周期函数也不一定存在最小正周期,像y=sin2x+cos2x.又如两个周期相同的周期函数相加得到的理应是周期函数,但它的最小正周期却有可能发生变化,比如y=cotx与y=tanx的周期是π,而y=cotx-tanx=2cot2x的周期是.对于确定函数的最小正周期的确是比较困难,教科书也只要求能化为y=Asin(ωx+φ)形式的函数,或者根据函数的图象直观地求出它们的最小正周期.二、有关最小正周期和非周期函数问题的证明本文将对上文涉及到的问题给以严格的证明例1证明f(x)=sinx,x∈R的最小正周期是2π证明:(1)f(x+2π)=sin(x+2π)=sinx=f(x)(2)假设存在0<T<2π使f(x+T)=f(x)即sin(x+T)=sinx,x∈R令x=0则sinT=0又0<T<2π则T=π令x=,sin(+T)=sin即sin=sin此为矛盾由(1)(2)两步可知2π为f(x)=sinx的最小正周期例2证明f(x)=|sinx|+|cosx|的最小正周期为,证明:(1)f(x+)=|sin(x+)|+|cos(x+)|=|cosx|+|sinx|=f(x)(2)假设存在0<T<使f(x+T)=f(x)即|sin(x+T)|+|cos(x+T)|=|sinx|+|cosx|令x=0得sinT+cosT=1即sin(T+)=又0<T<,<T+<∴sin(T+)>此为矛盾由(1)(2)两步可知为f(x)=|sinx|+|cosx|的最小正周期.例3证明f(x)=sin不是周期函数.证明:假设f(x)=sin是周期函数则存在T≠0使f(x+T)=f(x)即sin令x=0则sin=0则=kπ,k∈Z①令x=T则sin∴=nπ,n∈Z②②÷①得(n∈Z,k∈Z)此为矛盾∴f(x)=sin不是周期函数.例4证明f(x)=sinx+cosx不是周期函数.证明:假设f(x)=sinx+cosx是周期函数,则存在T≠0使f(x+T)=f(x),即sin(x+T)+cos(x+T)=sinx+cosx令x=0,cosT=1,则T=2kπ,k∈Z①令x=-T,sin(-T)+cosT=1即sinT=0,则T=nπ,n∈Z②①÷②得此为矛盾.因此f(x)=sinx+cosx不是周期函数.上述有关最小正周期和非周期函数的证明都是采用了反证法.