您的位置首页生活百科

牛吃草问题基本公式

牛吃草问题基本公式

的有关信息介绍如下:

解决牛吃草问题常用到四个基本公式,分别是︰

(1)草的生长速度= (对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);

(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;

(3)吃的天数=原有草量÷(牛头数-草的生长速度);

(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛顿问题的基础。由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牛吃草问题基本公式

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。

扩展资料:

牛吃草问题实例:

天气渐渐变冷,牧场上的草不仅不增长反而以固定的速度减少。已知牧场上有一片草地,草地上的草可供给20头牛吃5天,15头牛吃6天,照这样计算可供给多少头牛吃10天?

分析:设一头牛一天吃的草为1份。原有草量是固定的。在牛吃草的过程中,由于天气变冷,草每天都均匀的减少。

草每天减少的量是固定的。那么原有草量-5天草的减少的量=20头牛吃5天的草量=20×5=100份。原有草量-6天草的减少量=15头牛吃6天的草量=15×6=90份。那么(100-90)÷(6天草的减少量-5天草的减少的量)就是草每天的减少量。

每天草的减少量:(100-90)÷(6-5)=10份。

原有草量:20×5+10×5=150(份)或者15×6+10×6=150(份)

牧场10天实际消耗的原有草量:10×10=100(份)

10天可供多少头牛吃:(150-100)÷10=5(头)

参考资料来源:百度百科-牛顿问题(牛吃草问题)