什么是拟合值
的有关信息介绍如下:插值和拟合都是函数逼近或者数值逼近的重要组成部分他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的目的,即通过"窥几斑"来达到"知全豹"。简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。具体插值拟合的计算参考下面回复:1)Matlab中如何作线性拟合/线性回归/多元线性回归?:#FangQ(Qianqian.Fang@Dartmouth.Edu),2002/6/21, BigGreen/MathTools #即用y=a*x+b来拟合一组数据{{x1,y1},{x2,y2}…{xn,yn}}matlab中使用polyfitx=data(:,1);y=data(:,2);p=polyfit(x,y,1);p(1)为斜率a,p(2)为截距b多元线性回归即用y=a1*x1+a2*x2+..+am*xm来拟合数据点{x1i,x2i,…xmi,yi}(i=1~n)|x11,x21,…xm1|A=|x12,x22,…xm2||…………… ||x1n,x2n,…xmn|Y={y1,y2,y3,…,yn}'则系数{a1,a2,…,am}'=pinv(A)*Y在matlab中使用coeff=A\Y则可以得到最小二乘意义上的拟合系数matlab默认只提供了多项式拟合的函数polyfit,对于其他稍微简单一点的拟合,如标准的指数、对数、高阶多项式拟合,都有解析公式,参见:http://mathworld.wolfram.com/LeastSquaresFitting.html对于更加复杂的非线性函数,建议使用Mathematica或者DataFitMathematica中提供了Fit[],以及<< Statistics`NonlinearFit`NonlinearFit[],NonlinearRegress[]可以拟合任意复杂的表达式。DataFit可以自定义拟合模型,适用于复杂系统的拟合。