您的位置首页生活百科

无理数的定义

无理数的定义

的有关信息介绍如下:

无理数的定义

无理数是无限不循环小数和开方开不尽的数. 如圆周率、√2(根号2)等。   有理数是所有的分数,整数,它们都可以化成有限小数,或无限循环小数。如22/7等。   实数(real number)分为有理数和无理数(irrational number)。   有理数可分为整数和分数   也可分为正有理数,0,负有理数。   除了无限不循环小数以外的数统称有理数。1、把有理数和无理数都写成小数形式时,有理数能写成整数、小数或无限循环小数,比如4=4.0, 4/5=0.8, 1/3=0.33333……而无理数只能写成无限不循环小数,   比如√2=1.414213562…………族好根据这一点,人枣粗们把无理数定义为无限不循环小数。   2、无理数不能写成两整数之比,举例不对,1分之根号2,根号2本凳穗镇身就不是整数。   利用有理数和无理数的主要区别,可以证明√2是无理数。   证明:假设√2不是无理数,而是有理数。   既然√2是有理数,它必然可以写成两个整数之比的形式:   √2=p/q   又由于p和q没有公因数可以约,所以可以认为p/q 为最简分数,即最简分数形式。   把 √2=p/q 两边平方   得 2=(p^2)/(q^2)   即 2(q^2)=p^2   由于2q^2是偶数,p 必定为偶数,设p=2m   由 2(q^2)=4(m^2)   得 q^2=2m^2   同理q必然也为偶数,设q=2n   既然p和q都是偶数,他们必定有公因数2,这与前面假设p/q是最简分数矛盾。这个矛盾是由假设√2是有理数引起的。因此√2是无理数。   1.判断a√b是否无理数(a,b是整数)   若a√b是有理数,它必然可以写成两个整数之比的形式:   a√b=c/d(c/d是最简分数)   两边a次方得b=c^a/d^a 即c^a=b*(d^a)c^a一定是b的整数倍,设c^a=b^n*p 同理b*(d^a) 必然也为b的整数倍,设b*(d^a)=b*(b^m*q). 其中p和q都不是b的整数倍   左边b的因子数是a的倍数,要想等式成立,右边b的因子数必是a的倍数,推出当且仅当b是完全a次方数,a√b才是有理数,否则为无理数。