您的位置首页百科知识

负数的来历是什么?

负数的来历是什么?

的有关信息介绍如下:

中国是世界上最早认识和应用负数的国家,早在公元前4世纪的《九章算术》,中国数学家就已经了解负数和零的概念了。公元1世纪的《九章算术》说“正负术曰:同名相除,异名相益,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之。”

大意是“减法:遇到同符号数字应相减其数值,遇到异符号数字应相加其数值,零减正数的差是负数,零减负数的差是正数。”以上文字里的“无入”通常被数学历史家认为是零的概念。

尽管中国古人首先发现并应用了负数,但却并没有从理性方面讨论负数存在的意义和本质,这可能是文化习惯导致的。对负数精确的定义,和其根本属性的讨论,是由近代西方数学家首先完成的。

西方最早在数学上使用负数的是一本印度数学文献,Brahmagupta写于628年的 BrahmaSphuta-Sidd'hanta。它的出现是为了表示负资产或债务。在很大程度上,欧洲数学家直到17世纪才接受负数的概念。

负数的来历是什么?

扩展资料

实数

在数学中,实数是有理数和无理数的总称,前者如 {\displaystyle 0} {\displaystyle 0}、 {\displaystyle -4} {\displaystyle -4}、 {\displaystyle {\frac {81}{7}}} {\displaystyle {\frac {81}{7}}};后者如 {\displaystyle {\sqrt {2}}} {\sqrt {2}}、 {\displaystyle \pi } \pi 等。

实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。但仅仅以枚举的方式不能描述实数的全体。实数和虚数共同构成复数。根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。

以边长为 {\displaystyle 1} 1公分的正方形为例,其对角线有多长?在规定的精度下(比如误差小于 {\displaystyle 0.001} {\displaystyle 0.001}公分),总可以用有理数来表示足够精确的测量结果(比如 {\displaystyle 1.414} {\displaystyle 1.414}公分)。

但是,古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念;他们原以为:任何两条线段(的长度)的比,可以用自然数的比来表示。

参考资料来源:百度百科-负数