启发式搜索是什么?
的有关信息介绍如下:启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无畏的搜索路径,提到了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。我们先看看估价是如何表示的。 启发中的估价是用估价函数表示的,如: f(n) = g(n) + h(n) 其中f(n) 是节点n的估价函数,g(n)实在状态空间中从初始节点到n节点的实际代价,h(n)是从n到目标节点最佳路径的估计代价。在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。如果说详细点,g(n)代表了搜索的广度的优先趋势。但是当h(n) >> g(n)时,可以省略g(n),而提高效率。 启发算法有: 蚁群算法,遗传算法、模拟退火算法等 蚁群算法是一种来自大自然的随机搜索寻优方法,是生物界的群体启发式行为,现己陆续应用到组合优化、人工智能、通讯等多个领域。蚁群算法的正反馈性和协同性使其可用于分布式系统,隐含的并行性更使之具有极强的发展潜力。从数值仿真结果来看,它比目前风行一时的遗传算法、模拟退火算法等有更好的适应性。