arctanX的导数是多少?
的有关信息介绍如下:解:令y=arctanx,则x=tany。
对x=tany这个方程“=”的两边同时对x求导,则
(x)'=(tany)'
1=sec²y*(y)',则
(y)'=1/sec²y
又tany=x,则sec²y=1+tan²y=1+x²
得,(y)'=1/(1+x²)
即arctanx的导数为1/(1+x²)。
扩展资料:
1、导数的四则运算(u与v都是关于x的函数)
(1)(u±v)'=u'±v'
(2)(u*v)'=u'*v+u*v'
(3)(u/v)'=(u'*v-u*v')/v²
2、导数的基本公式
C'=0(C为常数)、(x^n)'=nx^(n-1)、(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x、(secx)'=tanxsecx
3、求导例题
(1)y=4x^4+sinxcosx,则(y)'=(4x^4+sinxcosx)'
=(4x^4)'+(sinxcosx)'
=16x^3+(sinx)'*cosx+sinx*(cosx)'
=16x^3+cosx²x-sinx²x
=16x^3+cos2x
(2)y=x/(x+1),则(y)'=(x/(x+1))'
=(x'*(x+1)-x*(x+1)')/(x+1)²
=((x+1)-x)/(x+1)²
=1/(x+1)²
参考资料来源:百度百科-导数